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Abstract

In a three part series of papers, a generalized finite element analysis

scheme is developed to handle the steady and transient response of moving/

rolling nonlinear viscoelastic structure. This paper considers the develop-

ment of the moving/rolling element strategy, including the effects of large

deformation kinematics and viscoelasticity modelled by fractional integro-

differential operators. To improve the solution strategy, a special hier-

archical constraint procedure is developed for the case of steady rolling/

translating as well as a transient scheme involving the use of a Grunwaldian

representation of the fractional operator. In the second and third parts

of the paper, 3-D extensions are developed along with transient contact

strategies enabling the handling of impacts with obstructions. Overall the

various developments are benchmarked via comprehensive 2- and 3-D simula-

tions. These are correlated with experimental data to define modelling

capabilities.
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I. Introduction

While extensive effort has been given to handling the response of

structure with fixed loading sites [1-3], much less is available for prob-

[4-10] In thislems wherein either the load or contact regions move

context, such structures as tires, rollers, compressors, bearings, pumps,

turbines and manufacturing equipment (lathes, grinders, mills), all are

typically excited by some form of traveling/moving load or boundary condi-

tion. Such problems have been partially addressed in the recent works of

several authors [4-12]. For instance, Padovan et al. [6-i0] introduced

the use of so called moving coordinate systems to handle traveling/rolling/

rotating structural systems. This includes both total and updated formula-

tions [9] involving primarily Hookean and Kelvin Voigt type formulations

and 2-D benchmarks [6-10].

In the context of the foregoing this paper series will extend previous

work by considering the development of large deformation viscoelastic FE

formulations for steady and transient traveling/rolling/rotating structure.

Overall special emphasis will be given to:

i) The development of large deformation viscoelastic moving finite

[13]
element (FE) formulations involving nonlinear elasticity

and damping characteristics modelled by fractional integrodiffer-

ential operators [14,15].

ii) The creation of a specialized hierarchically constrained Newton

Raphson solution scheme for steady rolling problems;

iii) The development of an implicit transient solver which incorporates

a Grunwaldian type simulation [16] of the fractional integro-



differential operator used to simulate the viscoelastic material

behavior;

iv) The development of 3-D translating/rolling cubic isoparametric

type elements;

v) The development of rolling/translating type shell elements;

vi) The creation of 3-D moving contact strategies;

vii) Comprehensive3-D simulation of a steadily rolling tire where

analysis is correlated with experimentally derived tire test

data;

viii) The creation of transient rolling contact schemescapable of

dealing with impacts with holes/bumps;

ix) Integrating rolling/translating FE schemewith transient contact

methodology; and,

x) Comprehensively benchmark scheme with transient simulations of

tire roll over events involving holes and bumps.

Due to the number of topics covered, the overall paper is separated

into three parts. The first covers items i) - iv). The second outlines

iv) - vii). Lastly, the third covers items viii) - x).

II GoverninK Field Equations

To enable the modelling of rolling/moving structure undergoing large

deformations, we shall employ the 2nd Piola Kirchhoff stress and Lagrangian

strain tensor combination [9,17]. Secondly, to handle the moving/rolling

motion, a change of reference base is used to define the requisite recti-
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linear, Coriolis and centripetal accelerations. This yields the following

equations of motion, namely

(Sjk(6ik + Ui,k))'J + f'1 =

d 2 d (2.1)
p -- (u i) + 2PEimn_ m _ (u n) + PEinrEmnk_r_kUm

dt 2

where 6ij, Sij, u i, fi' _m' 0 and d()/dt respectively define the Kronecker

delta, the second Piola-Kirchhoff stress tensor, the displacement, body

force, rotation vector, initial density and comoving time derivative.

Since viscoelastic media are considered,

= Sij(L11 d_ ) (2.2)Si 3• ''''' dt LII'''"

such that L.. the Lagrangian strain tensor is defined by
13

1 + u + u£ ) (2.3)Lij = 2 (ui,i j,i ,iu£,j

The boundary conditions associated with (2.1) - (2.3) take the form

i) For xiEaRa;

Sjk(6ik + Ui,k)nj = S.I (2.4)

ii) For x.EaR ;
I u

U• _ Uo

i 1

(2.5)

where

aR = aR + aR
U 0

(2.6)

such that aR defines the surface of R. Since we are considering translating/

rolling structures, the loads defined on certain of the boundaries are of

the moving type namely

S i = Si(x_ - c(t),t)_ (2.7).
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such that the vector x defines the initial coordinates, c(t) the trajectory

undertaken by the load and t is time. Based on the functional dependence

defined by (2.7), the various dependent field variables have the following

form that is

S.. = S..(D,t)
13 13 -

u.m = ui(_'t)

gij = Lij(_,t)

(2.8)

where

D = D(x,r,e,t)

with D denoting the Galilean type position vector
[9]

(2.9)

and (r,O) the radial

and circumferential locations relative to the center of rotation.

Employing the functional representation defined by (2.8), the comoving

derivative takes the form [I0]

d (u) 8
d--t ~ = _ (u) + _ (u) (2.10)

d2 _2 8

-- (u) ---- (u) + 2_ (_ (u))+ _(u)
dt 2 - 8t 2 - _ ~

(2.11)

(u,}u_ = u 2

u3

(2.12)

where the differential operators _ and _ are defined in the Appendix. For

steadily translating/rolling structure, (2.10) and (2.11) reduce to

and

d__ (u) = _(u) (2.13)
dt -

A2
" (u) -- _,(u)
de 2 -

(2.14)
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To enable the derivation of the requisite FE formulation, (2.1) -

(2.6), (2.10) and (2.11) can be employed to yield the virtual work prin-

ciple cast in moving coordinates. After several manipulations we yield

the expression

a2
£ {6(L)Ts + 6(u)T([ml ] -- (u) +
R ~ ~ - at2 "

a

[[m 2] + 2[ml]_( )] _ (_) + [[m 3] +

[m21_( ) + [ml]7( )]u)} dv

du.ds
/ Sjk(6ik + Ui,k)nj i
aR

(2.15)

where ( )T denotes matrix transposition, 6( ) the first variation and

sT = (SII,$22,$33,S12,$23,S13)

LT = (LII,L22,L33,LI2,L23,LI3)

[m 1 ] _ O[I]

[m2] _ 20_imn_m

[m3] _ O_inremnkflrflk

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

For the case of steady rolling/translating, (2.14) reduces to the form

I {6(L)Ts + 6(u)T[[m3 ] + [m2]_( ) + [ml]Y( )]u} dv =
R

far Sjk(6ik + ui'k) n.6u.ds3i
(2.21)

where here due to the use of Galilean type coordinates [9], time is removed

from the formulation for both linear and nonlinear situations.



The preceeding formulations were cast in so called total Lagrangian

form wherein all kinematic fields are referenced relative to the initial

configuration. Alternatively, for very large deformation situations, the

updated Lagrangian strategy can be used. For such a formulation, the

reference base is reassigned intermittantly to intermediate kinematic

states. In this context u i, Sij and Lij are recast in the form

u. =V.+ u.
I I TI

L.. = L.. + L..
1j 1j • 1j

S.. = S.. + S..
1J 1j • mj

where (7 i , Lij, Sij) and ( u i, Lij, Sij) are respectively the dis-

placement, strain and stress fields defining the reference state at T and

their associated excursions. Based on (2.21), (2.14) takes the form

_2
f {6(TL) _ S + 6( L*)Ts + 6( u)([m 11 -- (Tu) +

.... at 2 -R
T

8
[[m 2] + 2[ml]_[l] _ (T_) + [[m 3] +

Cm2]_( ) + [ml]x( )]Tu)} dv =

JR( Sjk(6ik + V.l,k + _Ui,k) +
T

Sjk TUi,k) nj6( u i) ds

where

1

6(_L) _ _ {6(Tui, j + 6( uj, i) +

V£,i6(_u£, j) + V£,j6(_u£, i) +

(2.22)

(2.23)

Tu£,i6(u_,i) + 6(u£,i) u£,j} (2.24)
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)
6(xL *) Ui,k6(_uj (2.25)

For the steady case, (2.23) reduces to the form

I{6( L)TS_ _ + 6(L*)T_ _S + 6(_u)[[m 3] +
R

T

[m2]V( ) + [ml]_( )]zu)} dv =

i( Sjk(6ik + V.l,k + _u'1,k ) +
a
T

Sjk TUi,k) nj6(Tu i) ds
(2.26)

III. Viscoelastic Material Properties

To complete the set of governing field equations, constitutive rela-

tions need to be defined. For the current purposes we shall consider the

translating/rolling of viscoelastic structure. Since rolling/translating

on smooth or uneven surfaces involves a wide range of speeds and potential

spectral excitations, the viscoelastic formulation must be able to accommo-

date such factors. In this context it is well known that the use of the

traditional Kelvin Voigt [17] simulation cannot handle problems involving a

perfusion of spectra. Because of this we turn to the use of fractional

integrodifferential representations [16]. As shown by Bagley and Torvik,

[14,15] such operators have an improved capacity to handle frequency varia-

tions.

To enable the development of such a formulation, we recall the classical

[17]
generalized Maxwell-Kelvin-Voigt type representation, namely

(£) d£ (£) d_

Sij + E£ Uijab --dtE (SAD) = Gij(L II,L22,...) + E£ =ijab dt E (Lab) (3.1)

,,(_) (_)
where here _ijab and _ijab are respectively the compliance and
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stiffness properties of the various stress and strain rate terms. Note

Gij(LII,...) defines the nonlinear elastic behavior which say in the case of

rubber would be the Mooney-Rivilin correlation [13]. Reinterpreting the

integer ordered differential operators appearing in (3.1) to be of the more

[14-16]
comprehensive fraction type , we yield the expression

Sij + Z •(£) D =
£ uij ab p£(Sab)

(£) D L d

Gij(LII,L22,...LI3) + Z£ a..ijabq£( ab) + 8ijab --dt(Lab)

suchthat here in Riemann-Liouville form

(3.2)

Dp£(Sab) = 1 it 1 Sab(_) d_r(-pe) o (t-_)P£

(3.3)

with F defining the gamma function [18] Alternatively, ( ) can be
. Dp£

expressed in the computationally more convenient but equivalent form

developed by Grunwald [16] namely

D (S) = Z (Z_t)-P£ A(p£,j+l)S(t-jAt)
P£ j

(3.4)

such that

Pg

A(p£,j+l) = (-i) j (j) =

r(j-p£)

r(-pz)r(j+l)

(3.5)

Note, the coefficients A(p£,j+l) denote the memory of the material. For

appropriately chosen p£, they represent an essentially monotone decreasing

set. As p£ the order of the fractional derivative can be experimentally

chosen [14,15], a wide ranging series of histories can be accommodated by

(3.2).

To expedite the development of the requisite solution algorithm, (3.2)

is converted to matrix form namely



+ Z [u(£)]Dp£(S) =
£

d

G(L)__ + Z£ [a (£)]Dq£(L)_ + [8] _ (L)
(3.6)

where here

[_£] -=_ijab

[a(_)1 _=_(t)
ijab

[8] - 8ijab

(3.7)

and based on (3.4) we see that

D (S) = (At)-P£ E A(p£,j+l)S(x,t-j_t)
Pt - j=0 - "

(3.8)

D (L) = (_t)-q£ I A(q^ . }L(x,t-j_t) (3.9)

q£ ~ j=0 _,j+l - -

Since we are dealing with rolling/translating structure, recalling the use

of the Galilean transform [9] , it follows that (3.6) converts to the form

s(n,t) +
~ --

Z [U(£)](St)-p£ Z A(p£,j+l)S(n(x-c(t-j8t)),t-j&t) =
j

d
G(L(n,t)) + [8](P(L_(n,t)) +_-{ (L(n,t)) +

Z [a(£)](At)-q£ Z A(qt,j+l)L(n(x-c(t-jnt)),t-jnt)
t j

(3.10)

To recast (3.10) into a more convenient form, it must be recognized

that the family of terms defined by S(N(x-c(t-jAt)), t-j&t) and

L(n(x-c(t-jAt)),t-j&t) je[0,®) represents the history of a given particle.

Obviously the particle occupies different locations during its history. For

simplicity we shall designate _^_,,= successmon of positions by the nomenclature
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(r,m,t+_t) such that r designates the radial position, m the circumferential

positions and t+At the time.
th

For rotating bodies, the m circumferential location is defined by

J_r wherein

A_r = CrAt (3.11)

In this context at time t the location of the particle is given by

(r,m-l,t). Based on such nomenclature, S is cast in the form t+AtS (r'm)

t+At_ (r'm) _ _(_r + (m+kJr)a_r't+at) (3.12)

such that _r is the initial position, k the total number of complete revolu-

tions, J the number of time increments required to define a given revolution
r

th

and 6_r the incremental circumferential motion of the r position. In a

similar context, we see that

t+_t_ (r'm) = _(_r + (m+kJr)a_r't+At) (3.13)

Employing the foregoing nomenclature, it follows that (3.6) reduces to

t+&tS (r'm) + E [p(£)]Dp£ (t+_tS (r'm)) =

G(r+AtL (r'm)) + [8](_(t+ntL (r'm)) +

_8 (t+atL(r,m) [_(£)]Dq£(t+AtL(r,m)))
.£

(3.14)

Generally the solution to FE simulations involves the use of tangent

type material formulations. In this context, we note that

_(r,m) = As(r,m) + t (r,m-l)t+nt_ - = (3.15)
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and

t+_tL(r,m) = _L(r,m) + tL(r,m-1)

.(r,m). &L(r,m) (r,m-l))_(t+At L(r'm)) = [UT ] - _ + _(t_

(3.16)

(3.17)

where here [DT] defines the tangent elastic properties. Based on these

expressions, it follows that (3,147 reduces to the form

AS (r'm) + tS (r,m-l) +

[N(£)](At)-P£ {A(p£,I)(AS (r'm) + tS (r'm-1)) +
£

Z A(p£,j+l)t_(j_l)AtS(r'm'J) } --
j=l

G(tL(r,m-l)) + [D_r,m)] _L(r,m) +

S [a(£)](At)-q£ {A(q_,I)(AL (r'm) + tL (r'm-l))

.(r,m-l)_
Z A(q£, j+l)t_(j_l)At_ - _ +
j--i

+

[8] {_(AL (r'm)) + _(tL (r'm-l)) +

a (r,m-1))}8-_ (a_ (r'm) + t_ (3.18)

At time t the prior location of the particle is (r,m-l), hence we have that

ts(r'm-l) +

Efu(£)](At)-P£

£

G(tL (r'm-l))

S A(p_,j+l)t_j_ts(r'm-l-J) =
j=O

+

(over)



12

Z [a(£)](_t) -p£ E A(q£,j+l)t_jatL (r'm-l-j) +
£ j=0

+ a 1))}[8] {_(tL(r'm-l)) _ (tL(r'm- (3.19)

Differencing (3.18) and (3.19) we yield the incremental expression

[p(r,m)] _s(r,m)

[a(r,m)] aLr,m) + [8] _(&L (r'm)) +

8 r,m) h(r,m)
[8] _-{ (&L( ) + t+&t- Pa8 (3.20)

where

[U(r'm) ] : [[I] + S (at) -p£ A(p£,I)]P(£)]]
£

and

[=(r,m)] = [[D_r,m)] + Z (At) -q£ A(q£,l)[=(£)]]
£

h(r, m) [=(£)]
t+6t- Pc8 = Z (&t) -q£ E (A(q£,j+2) - (i-

£ j:0

(3.21)

(3.22)

sgn(j,0))A(q£,j+l))t_j6tL (r'm-l-j) -

Z (at)-P£ [p(£)] E (A(p£,j+2) - (i -

£ j:O

sgn( j, 0 ))A(p £, j+l ))t-j 6t S (r,m- l-j )
(3.23)
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IV. FE Formulation

For the current purposes, a displacement type representation is employed

to develop the requisite FE formulation. In this context we have that [2]

u = [N]Y (4.1)

where [N] is the shape function and Y the nodal deflections.

situations it follows that [9,10]

For transient

[N] = [N(n)]

and [i0]

(4.2)

Y = Y(t) (4.3)

Based on (4.1), (2.10) and (2.11) yield the following expressions for

velocity and acceleration, namely

a
d__dt(u)_ = • ([N])Y_ + [N] _ (Y)_ (4.4)

d 2 a 8 2

-- (u) = X ([N])Y + 2_([N]) _ (Y) + [N] -- (Y)
dt 2 - _ . at 2 -

(4.5)

Continuing, 6L takes the form [9]

6L = [B*]6Y (4.6)

Employing (4.4) - (4.6), (2.14) can be used to develop the following FE

formulation, that is

I {[B*]Ts + [N]T([ml][N]_ +
R

[[mz][N] + 2[ml]_([N])] _ + [[m3][N] + [m3]_([N]) +

[ml]Y([N])]Y) } dv = F (4.7)
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In the case of steady translating/rolling Eq. (4.7) reduces to the form

f {[B*]S + [N]T([m3][N] +

R

[m2]_([N]) + [ml]Y([N])) [ } dv = F
(4.8)

Since (4.7) and (4.8) are inherently nonlinear, numerical

schemes are required to generate their solution. This will be developed

in the next section.

V. Solution Algorithms

The FE simulations given by (4.7) and (4.8) respectively define transient

and steady state aspects of the translating/rolling problem. Solution algo-

rithms to such models are developed in the succeeding subsections.

V.l Steady Problem

Since (4.8) is inherently nonlinear, the Newton-Raphson scheme will be

employed to affect its solution. To improve the resulting algorithms'

stability and self adaptiveness, a locally constrained version will be devel-

oped. To start, (4.8) is recast in incremental form namely

f {[G]T[s][G] + [B*]AS + [[m3][N] + [m2]_([N]) +

R

[ml]X([N])]AY } dv = AF (5.1)

such that [S] is the prestress matrix. At this stage, it must be recognized

that due to the viscoelastic properties, (5.1) must reflect the appropriate

history effects on AS. In this context, for each point in the domain given

by R, AS and [S] must be linked to its past so as to define the requisite

history effects. Hence, (5.1) is recast as follows:
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/ {[G(r'm)]T[t+_ts(r'm)][G(r'm)] +
R

[B*(r,m)]_S (r'm) + [[m3][N] + [mz]$([N]) +

[ml]Y([N])]sy(r,m) } = AF(r,m)

Employing (3.20) in conjunction with (5.1) we yield the following

assembled algorithmic expression

i_y = i_itK]-l(i_F - iH 8) (5.2)

i_l[K] = i_l[[K T] + [K 8] + [Kp]] (5.3)

where

i_I[KT] = f {[G]T[i_IS][G] + i_I([B*]T[_]-I[_][B_])} dv (5.4)
R

i_l[K 8] = _ i_I([B*]T[_]-I[8]T([B*])) dv (5.5)

i_l[Kp] = /[N] T i_l([m3][N ] + [m2]_([N]) + [ml]_([N])) dv (5.6)
R

iAF = F - I i_I{[B_]Ts + [N]T([m3][ N] +
R

[m2]_([N]) + [ml]Y([N]))Y} dv
(5.7)

and

= I [ul-iihu Bdv
R

such that [_], [a] and _8 are the assembled versions of [_(r,m)],

[_(r,m)] and h (r'm)
- _a8 "

(5.8)

Note, for rolling geometries which are symmetric, the various mechanical

fields are periodic. Because of this, the computation of i_pm8 is greatly

simplified. Specifically, turning to the instantaneous local (r,m,t+_t)
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particle location, we see that due to periodicity, for the previous roll

the (r,m-Jr,t+&t-Jr&t) position possesses the samemechanical fields.

In this context, it follows that

t+&t_ (r'm) = _(_r + (m+kJr)&hr,t+&t)

+ (m-l+kJr)Aqr,t+(l-Jr)&t)

Hence, for the steady rolling case we have the following interrelationship

between succeeding rolling states, that is

t+_t_ (r'm) = _(_r + (m+kJr)&_r't+At)

s(r,m) = _(_r + (m+kJr)A_r)

s(r,m) = _(_r + m&_r)

for all m¢[l,J r] and k_[O,®). Similarly,

(5.9)

_(_r + (m+kJr)A_r) _ _(_r + mAWr)

Based on the mechanical history defined by s(r'm)and L (r'm)

to the more convenient form

h (r,m)
- _aB

J
r

E (At) -q£ [ct(£)] E C(q£,j,m,r) L (r'j)

£ j=l
J

E (At) -p£ [U(£)] _ C(p£,j,m,r) S (r'j)

£ j=l

where

C(q£,j,m,J r) = Z (A(q£,m+l-j + (sgn (j,m) + k)J r) - (l-
k

sgn (j,m))A(q£,m-j + sgn (j,m) + k)J r)

(5.10)

, (3.23) reduces

(5.11)

(5.12)
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C(p£,j,m,J_) = Z (A(p£,m+l-j + (sgn (j,m) + k) J ) - (i -
k r

sgn (j,m))A)p£,m-j + (sgn (j,m) + k) Jr ) ) (5.13)

The coefficient families C(q£,...), C(p£,...) represent the history

effects on the (r,m) th particle. For instance, (5.12) defines the influence

on the strain state of the succession of ke[l,_) rolls through the (r,j)

orientation. Similarly, (5.13) defines the influence on the stress state

of the succession of ke[l,m) rolls through the same orientation. As seen

from (5.11), the net (r,m) th history is obtained by summing through all the

j_[l,J ] positional effects for all k_[0,®) rolls.
r

.AY convergingThe algorithm defined by (5.3) yields the succession of m -

to the solution

Yi -- Yi-i + iAY ; i=1,2,3...
(5.14)

To improve the robustness of the overall solution process, local constraints

are introduced. Since rolling structures have a variety of substructural

zones undergoing different levels of nonlinearity, AY is controlled separate-

ly through the use of a partitioned constraint process. Namely, (5.3) is

replaced by

.AY = diag [hi]i_l[K]-l(F - iHwa8) - i_l[k] -I f i_l([B*]TS)dv (5.15)
i - - R -

.AY is hierarchically controlled.where diag [hi] is defined such that x -

particular

diag [h i] =

hii[I i ]

hi2[l 2] 0

0 hiK[I K ]

In

(5.16)
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such that li£, £_[i, ] are the various constraints and [I£]; £e[I,K] a

set of identity matrices whose individual sizes define the groups of

degrees of freedom controlled by each given li£"

£e[I,K] family is obtained by either:

i)

ii)

The choice of the li£;

.bY to remain upperRequiring each of the various partitions of i -

bounded by a specified linear constraint; or

By employing a more general functional constraint say as in the

hyperelliptic constraint surface of Padovan et al. [19,20].

Before establishing either of the foregoing schemes, all the various

key vectors and matrices must be appropriately partitioned.

we let

T T.Ay T = (iAYl , in[2 iAY )
1 - ' "''' ~

In particular

(5.17)

with

(i_l[K]-l) T = [i[El], i[E2],..-,i[EK]]

i E£] _ i_I[[KT£] + [K 8 £] + [Ko£]]

(5.18)

(5.19)

such that the various partitions i[£ and i[E£], £e[l,<] have respectively

the same number of rows as the identity matrices [I£]; £E[I,K]. For sim-

plicity, the driving potential F - i_=8 is recast as

.F = F - .H
z- ~ z Ua8

(5.20)

Hence, employing (5.17), (5.18), and (5.20), (5.3) reduces to

*-T S
i_Z£ = (li£)i[E£]iF - i[E£]fi_l([B J _)dv ; £E[i,K]

(5.21)

[19]
Considering the elliptic constraint function approach , we intro-

duce the localized version
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emlliY£ll 2 + Ilif£ll2= IIo_FII 2 (5.22)

where £E[I,K] and

i_£ = i-l[£ + iA[_
(5.23)

i_£ = (_i£)'FI- (5.24)

such that 8£ defines the aspect ratio of the ellipse. Its choice will be

discussed later. Solving (5.21) - (5.24) simultaneously, we yield a quad-

rative expression in _i£ namely

iA£1(li£) 2 + iA£2(li£) + iA£3 = 0 (5.25)

Since the coefficients iA£1,.., are known scalars, Ai£ can be directly

evaluated from (5.25). Note, the roots chosen will be dependent on the

state of definiteness of [KTuSp].

The choice of the size of the [I£] partitions and their associated

warping parameters 8£ can either be user defined or automatically/self-

adaptively generated. If user chosen, the size of the various partitions

can be taken from a variety of factors namely

i) Inherent substructuring of a given system into component parts

defined by

• geometry

• material groups

• boundary conditions

or

ii) By geometry, material or boundary condition induced nonlinearity.

Such an approach also points to the appropriate choice of the local

warps 8£. Note, the control of the size of allowable local field excursions
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is obtained by requiring that they remain boundedby the family of elliptic

constraints defined by (5.22 - 5.24).

For instance, from blueprint information clearances are often given

for various substructural components. Such information can be used to

determine upper bounds on a given _Y£ allowable. In terms of (5.22), such

allowables would yield the following choice of 8£ namely

8£ _ 11o_[[12/11y£ allowable [12 (5.26)

To self adaptively update such partitioning and warping, running checks

can be made on:

i) The normed partition level out of balance loads;

ii) The level of strain energy stored/dissipated; or,

iii) The normed excursions in the associated mechanical fields.

Once various combinations of i) - iii) are triggered, the appropriate parti-

tions may be enlarged or shrunken along with associated changes in 8£.

Noting the architecture of the constrained algorithm defined by (5.21) -

(5.25), such partition and warping updates involve only straightforward

accounting changes to define/locate a given partition.

V.2. Transient Problems

To handle transient problems, we shall adopt the implicit manner of

formulation. In this context we recast (4.7) in so called incremental

format, that is

f {[G]T[s][G] + [B*]TAs + [N]T([ml][N]A_ ÷
R

[[m2][N] +

2[ml]V([N])]A _ + [[m3][N ] + [m2]V([N]) + [ml]V([N])]AY) } dv = AF

(5.27)
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For the current purposes, the solution to (5.27) is obtained by employing

the NewmarkBeta method as defined by the following time stepping algorithm

[1]
namely

.° -o

t+At Y : a0AY - a 2 t'Y - a 3 tY
(5.28)

t+_ti,_--t_ + ao tY+ a7 t+_tY (5.29)

a 0 = 1/(Bat 2) a 4 = y/8-1

a 1 = y/(Sat) a 5 = at/2(y/8-2)

a 2 = i/(Sat) a6 = At(l-y)

a 3 = 1/(28) - i a7 = yat

(5.30)

Rearranging (5.28) and (5.29) into incremental form we obtain the

expressions

.°

a_:CoaY+ c1 t__+c2 tY
°, °.

by= c3aY+ c4 g__+ c5 tY

(5.31)

(5.32)

where

C 0 = a7a 0

C 1 = -a7a 2

C 2 = ao-a7(al-1)

C 3 = a0

C4 = -a 2

C5 = -(a3-1 )

(5.33)

Based on (5.31), (3.20) takes on the following form

as(r, m) = [p(r,m)]-l[[=(r,m)][B*(r'm) ] +

[8]T([B*(r'm)]) + C0[8][B*(r'm)]]aY(r'm)

[p(r,m)]-i (r,m)
t+at_ p=8

+

(5.34)

such that
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(r,m)
t+_t_ _aB =

h(r,m) ,m) (r,m-l) "'(r,m-l)
t+At- _eS + [8][B*(r ] {CI t_ + C2 t_ } (5.35)

At this stage, employing (5.31), (5.32) and (5.35), it follows that at

the fully assembled level (5.27) yields the following expression

t+at[[KT] + [K 8] + [Kp]]aY = t+at(G a8 + aF + Ip)
(5.36)

where here

(r,m)
t+AtG8 _ f Z [u(r'm)] t+At_ _8 dv

R r,m

(5.37)

t+ata_ = t+at_ - I[B*]T _ dv I (5.38)
R t

]-1 *
t+At[K 8] = I [B*]T[u [C0[8][B ] + [8]T([B*])] dv

R

(5.39)

t+At[Kp] = / [N]T[c3[ml][N] + C0([m2][N] +
R

2[m2]T([N]) ) + [m3][N ] + [m2]T([N]) + [ml]_([N])] dv
(5.40)

and lastly

= I [N] r {[C4[ml][N] + CI([m2][N] +
t+At_p R

2[ml]_([N]))]t_ + [C5[ml][N] +

C2([m2][N ] + 2[ml]_([N]))]tY } dv
(5.41)

Solving (5.36) for Y yields

AY = t+At[KD ]-I t+At(G S + AF + Ip)
(5.42)

where the dynamic stiffness is given by the relation
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t+_t[KD] = t+_t[[K T] + [Kus] + [Kp]] (5.43)

Based on (5.41), the time marching schemedefined yields the overall

solution

t+At Y = t Y + AY
(5.44)

To improve the solution, (5.42) can be iterated in much the same manner as

the steady case. Convergence for such a process is defined by the usual

displacement norm check [20]

VI. Discussion

In the preceeding sections, a generalized nonlinear viscoelastic FE

formulation was derived for translating and rotating structure. This in-

cluded the development of both steady and transient solution algorithms. In

the case of the steady formulation, a new locally constrained solution algo-

rithm was created. For the transient case, an implicit algorithm involving

the use of the Newmark Beta method [I] was developed. Note to enhance the

capabilities of the overall formulation, the more comprehensive fractional

operator [14-16] is used to represent the viscoelastic effects.

In parts II and III of this paper, the foregoing algorithms will be

extensively benchmarked for both steady and transient situations. As noted

earlier, this will include evaluating steady 3-D rolling contact simulations

of pressurized tires. For the transient case rolling/translating over bumps

and holes will be simulated. To enable such simulations, part II will

include:

i) The development of 3-D rolling/translating elements handling

nonlinear kinematics and material properties;
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ii)

iii)

iv)

The development of rolling/translating shell elements;

The generalization of 3-D contact strategies to handle rolling

contact; and,

Comprehensive3-D benchmarkswith experimental verification.

In part III, the main thrust will be to:

i) Develop transient rolling contact schemescapable of handling

impacts with obstructions;

ii) Develop the overall solution architecture integrating both the

rolling/translating FE scheme with the transient contact scheme;

and,

iii) To comprehensively benchmark the scheme.

Note the transient and steady translating/rolling FE simulations and

associated solution algorithms have architectures essentially compatible

with traditional formulations. Apart from the nonsymmetry induced in the

static and dynamic stiffness, the changes required to incorporate such schemes

in GP codes are minimal.
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Appendix

In section II the governing field equations were developed. Here the

so called moving total/updated Lagrangian coordinates were introduced.

Assuming a cylindrical type coordinate system to define the geometry of

rolling/translating structures, _ can be defined by the expression

I r cos (e+_(t)) 1

= r sin (e+_(t))

xe

CA.1)

where here for constant rolling speeds about the x 3 axis

O(t) = nt (A.2)

Based on (A.1) and the fact that u. = ui(n,t), we see that the firstl

total derivative is given by

au. a aq

d (ui) = ___! + a__j (ui) i (A.3)d--t at

where

an 1
_ = - nr sin (8+_) (A.4)
at

an 2
--= _r cos (e+_) (A.5)
at

Combining (A.3) - (A.5) we see that

d a
d-_ (ui) = _ (ui) + _ (ui)

such that the _( ) operator is defined by the expression

_( ) = -_r sin (e+,) a___() + er cos (e+_) a___()
an I an2

CA.6)

(A.7)



28

Continuing, the second total derivative takes the form

d 2 a 2

dt 2 (ui) - at2 (u i) + 2_ (_ (ui)) + _(u i)

where here

a a

y( ) = -_2r cos (0+_) _ ()-_2rsin (0+_) _ ( ) +

a2 f12r2 2 a2
f12r2 sin 2 (0+O) _ ( ) + cos (0+¢) a_2 ( ) -

'1

a 2
2_2r 2 sin (0+¢) cos (0+_) ( )

anlan 2

(A.S)

(A.9)

For the special case of steady rolling, it follows that u i = u.(N).1

In this context (A.6) and (A.8) reduce to the expressions

d__dt(ui) = _(ui) (A.10)

d 2
-- (ui) = Y(ui) (A.11)
dt 2

where here time appears implicitly through the definition of _. As can be

seen through (A.10) and (A.II) the time derivative is replaced by a spatial

one.
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Abstract

In a three-part series of papers, a generalized finite element

solution strategy is developed to handle traveling load problems in

rolling, moving and rotating structure. The main thrust of this section

consists of the development of 3-D and shell type moving elements. In

conjunction with this work, a compatible 3-D contact strategy is also

developed. Based on these modelling capabilities, extensive analytical

and experimental benchmarking is presented. Such testing includes

traveling loads in rotating structure as well as, low and high speed

rolling contact involving standing wave type response behavior. These

point to the excellent modelling capabilities of moving element strategies.



I. Introduction

This is the second paper in a series of three considering the

development of large deformation viscoelastic FE formulations for

steady and transient travelling�rolling�rotating structure. Overall,

this part will give special emphasis to:

i) The development of 3-D translating�rolling

isoparametric type elements;

ii) The development of rolling/translating type shell

elements;

iii) The creation of 3-D moving contact strategies, and

iv) The comprehensive 3-D simulation of a steadily rolling

tire; here the analysis is correlated with experimentally

derived tire test data to provide real world corroboration.

Since part one of this series has provided a fairly thorough review

of previous work, for the sake of conciseness, we shall immediately get

into the development. Note, the overall structure of the paper follows

that defined by items i) - iv) noted earlier. Of particular importance

is the benchmarking phase which involves both analytical comparisons,

as well as, experimental test data. The empirical numerical correlations

include:

i)

ii)

iii)

Standing contact;

Frequency properties as per small deformation superposed

on large and;

Full rolling contact through all possible ranges of

velocity.

1
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2. Three Dimensional Formulation

Recalling Part 1 of this series, FE equations were derived for

moving load problems involving:

i) Transient inertial effects;

ii) Large deformation kinematics; and

iii) Viscoelastic properties.

Based on the use of a transient version of the Galilean transform [i-3],

the following moving formulation was developed.

[ {[Be] T S + [N]T([ml][N] _ + [[m2][N] +
R

2[m I] _([N])] _ + [[m3][N] + [m2] _([N]) +

[mI] = F (2.1)

For the case of steady state motion, the use of the multiply

constrained partitioned Newton Raphson scheme [3,4] yields the fol-

lowing solution algorithm namely

6Y = diag [Ai] [K]-I(F-iHv= 8) -i- i-i -

i_l[K] -I I i_l([B*] T S.)dv (2.2)
R

For this case, the consistent mass matrices are embedded within [K],

that is

i_l[K] = i_l[[K T] + [K 8] + [Kpl]
(2.3)

where



i_l[Kp] = I [N]i_l([m3][N] + [m2]_([N]) + [ml]_([N]))dv (2.4)
R

To establish i_l[Kp] for 3-D formulations, we shall employ a 20 node

isoparametric serendipity type brick element. Noting Fig. 2.1, it has

three displacement degrees of freedom per node. The displacement fields

in the 20 node solid element depend quadratically on the position within

the element [5,6]. That is, the components of the shape function of this

element have quadratic terms involving the isoparemetric coordinates. Fi-

gure 2.2 shows the element in isoparametric space. The components of the

shape function of this element are given in Table 2.1.

Noting the differential operators _( ) and _( ) given in (2.4), the

shape functions must be differentiated spatially. Because isoparametric

elements are used, the first step is to relate the derivatives with res-

pect to the global Cartesian coordinates (xI, x2, x3) to derivatives with

respect to the elements isoparametric coordinates (_i' _2' _3 )" This is

necessary because the shape functions of isoparametric elements are

written with respect to the _ coordinates. By convention, these shape

functions are used to relate the displacement fields in the element to the

nodal displacements.

Noting (2.4), it is seen that expressions for

aU.
i

{a(n I, n 2, n3)} =

au i ]

aui (2.5)
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and

a2u.

x n3)2 } ={a(n 1, n 2,

" a2u.
1

anl 2

a2u.
1

an2 2

a2u.
1

anlan 3

, (2.6)

must be found in terms of the nodal displacements. The forms used in

(2.5) and (2.6) are shorthand for the full number of first and second

derivatives, namely

(aui/an j, a2ui/anianj); (i,j)¢[1,3].

The first derivatives are related by

aU. aU.
1 1

{a(_l' _2' _3 )} = [J] {a(nl' n2' n3)
} (2.7)

where [J] is the Jacobian matrix given by

an.

column
(2.8)

This expression can be inverted to give the relationship between the

Cartesian and isoparametric spaces needed for the first derivatives,

that is

au i au.

ffi[j]-I {a(_l, _2' _3 )}(a(nl, n2' n3)} i
(2.9)
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To establish the requisite second derivatives, the chain rule is

applied twice. In the context of the a( )/_i and a2( )/a_ derivatives,

such an operation yields

au i 3 au i an£

a_j £=1 an£ a_j

(2.1o)

and

an£a2ui 3 a aui ) (2.11)

which upon expansion and combination of like terms reduces to

a2u. 3 a2ui an£ 2 aui a2n£ a2u anl an2

- z {?--f- + _j }+2 i
a_j 2 £-i an£ (a_j) an£ anlan 2 a_j a_j

.+

a2u. an I an 2 a2u. an 2 an 3
1 1

2 anlan3 a_j a_j + 2 an2an3 a_j a_j

(2.12)

Repeating this process for the remaining second derivatives, we obtain

the following overall operator expression namely

a2u. a2ui au i

{ i } . [jl] {a(nl,n2,n3) } + [j2] {a(nl,n2,n3) }
a(_i,_2,_3 )2

(2.13)

The matrix [Jl ] is (6x6) and [J2 ] is (6x3).

can be inverted to yield

a2u.
1

a(nl,n2,n3)2 } = [Jl ]-I {

Now, based on (2.9), (2.13)

a2u. au.
1 1

a(_i,_2,_3)2 }- [J3] {a(_l,_2,¢3j}

(2.14)

where
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[j3] = [jl]-i [j2] [j]-i (2.15)

The first and second derivatives on the right side of (2.14) are

with respect to the element's isoparametric coordinates. The shape

function and hence the displacement fields are described using this

coordinate system. Recalling Part I, thedisplacement field in the

element is related to the nodal degrees of freedom by

u = [N]Y (2.16)

For the u. components, (2.16) yields that
1

u. = .NTy (2.17)
i i- -

where .NT; i ffii, 2, 3 denote the three rows of [N].
I-

In (2.17), since Y are not spatially dependent, we see that

aui a ,_3)(iNT)] Y{a(_i,_2,_3 )} = [a(_l,_ 2 - _

a2u.

{ ,x_3)2} = [a(_l,_2
a2 _3)2(iNT)]Y

a(_l,_2, - .

(2.18)

(2.19)

where here

a

[a(q,_2,_3)(iN.T)] =

- a i_T) -aE;----_(

8_2 ( iN T )

a T

)_

(2.20)



and

a 2
[ 2(iNT)] ffi

a(_i,_2,_3 ) -

l
a2 ( NT) I

a_l 2 i-

a2 ( NT)

a_22 i-

a2 (iNT)

a_la_ 3

(2.21)

The details of the differentiation of the actual components of [N]

a2 a2

is given in Tables (2.2) - (2.4). Here -_i_-_( )' "--"2( ) and a_-_2(± ) are
a_ 1

depicted. Based on these expressions, the various other derivative ex-

pressions can be generated.

In the context of the foregoing nomenclature, the following expression

can be generated for aui/a(nl,n2, n3) namely

au.
i

{a(nl,n2,n3 )} a _3)(iNT)] _= [j]-i [a(_l,_2,
(2.22)

where iE[l,3]. In a similar manner, (2.14), (2.20) and (2.21) yield the

relation

_)2U.
I

{a(nl,n2n3)} =

a2 a
iNT)]Y [J3 ] [a(_1,_2,_3(i NT)]¥

[al j-I [a(_i,_2,_3)2 ( " . .

(2.23)

For transient situations, Part I derived the following FE formulation

namely



$ {[G]T[s][G] + [B*]T_s + [N]T([ml][N]_ + [[m2][N] +

R

2[ml]_([N])] _ + [[m3][N] + [m2]_([N]) +

[ml]Y([N])]Ay)}dv = _F (2.24)

Upon use of the Newmark Beta type integration method, (2.24) was seen

to reduce to the following more tractable form, that is

t+at[[KT] + [Kp8 ] + [K0]]a _ = t+at(Gpa8 + aF + Ip)
(2.25)

where here

t+at[Kp] "

I [N]T(c3[ml][N] + Co([m2][N] +
R

2[m2]_([N])) + (m3][N] + [m2]_([N]) + (ml]_([N])]dv
(2.26)

As can be seen again, consistent mass terms are embedded in (2.25) which

involve the _( ) and ¥( ) differential operators. These can be treated

through the use of (2.22) and (2.23) wherein the various derivatives of

the components of [N] can be obtained/generated from Tables 2.1-2.4.

3. Thick Shell Element Formulation

Certain engineered structures have the property that their normal

strain components in the thickness direction are negligible in comparison

to the in-plane values. In these cases, the structure can be modelled as

a shell. For such situations, enhanced computational savings are obtained

since the normal components in the thickness direction are entirely neglected.



To allow for this modelling feature in steady and transient moving load

problems, an eight node isoparametric shell element is developed. It is

obtained by degenerating a three dimensional solid element [5,6]. A

typical shell element and its associated nodes is shown in Fig. 3.1.

To start the development, it is noted that the in-plane shape function

components are the same as those for the (_I,_2) plane (_3_0) in the solid

element. The relative in-plane displacements between the top and bottom

surfaces of the solid element are handled by rotational degrees of freedom

and the thickness. These rotational degrees of freedom are with respect to

the local axes, as shown in Fig. 3.2. The element has three displacement

and two rotational degrees of freedom at each node.

The displacement field in the element, for the ith global direction is

expressed as

8 k _3 k k k k

= , +Vli8 2) (3.1)u. Z Nk(_l,_2)u i + _- Nk(_ 1 _2)hk(-V2i81
i k=l

k
where u i is the displacement of node k in the ith direction, hk is the

k k

thickness at the given node, (Vli, v2i) are components of the local vector

k) are the rotational degrees ofin the (i,2) directions and lastly (8_, 82

freedom about the local (1,2) axes at the kth node. The derivatives with

respect to the in-plane variables _i and 62 of (3.1) will be of the same

form, except that the shape function is replaced by the appropriate deri-

vative. For example, the displacement derivative with respect to _i is

_u. 8 aNk(_l,_ 2) k _3 8Nk(_I'_2)L , k ^k k k

___!= Z ( _q u i + _- nk_-V2i_ 1 + Vlle2))a_l k=l a_l (3.2)
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Similar expressions can be derived for the remaining first and second

derivatives. Note, the values of the requisite components of the shape

function and their associated derivatives can be found using Tables (2.1) -

(2.4) by setting _3 to zero.

The first derivative of the displacement components with respect to

the out of plane coordinate _3 is given by

8u i 8 1 k k k k) (3.3)
--= E _ Nk(_l,_2)hk(-V2i81 + Vli8 2
8_3 k=l

The second derivative namely 82ui/_ _ is zero. Continuing, the second

derivatives with respect to (_i,_3) and (_2,_3) are a combination of (3.2)

and (3.3). The forms of (3.2) and (3.3) and the appropriatevalues of the

shape functions and their derivatives are used to give the quantities needed

to define the transformed inertia matrices.

The calculation of the transformed mass matrix using the formulation

just described requires extensive numerical integration. Obviously, it

would be preferred from a computational point of view to have a closed form

expression for the transformed mass matrix. This is possible for the special

case of rotation about a single axis.

As a simplification of the formulation, considering body of revolution

coordinates, the inertia in the circumferential and radial directions can

be handled by the consistent approach [7], while the meridional direction

inertia is handled by the lumped approach [7]. This is chosen because the

inertia due to rotation lies in the circumferential - radial plane. Also,

this way of expressing the problem will simplify the formulation and allow

for closed form integration of the transformed mass matrix. Shape functions
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for the consistent part of the formulation are written with respect to the

element's local coordinate system rather than the isoparametric system.

This puts a restriction on the shape and orientation of the element - its

sides must lie in the circumferential, meridional, and radial directions.

This is really not a restriction in body of revolution analyses since such

an approach is the easiest way to build the finite element grid on a specific

geometry.

Overall, the foregoing simplifications can be implemented in several

steps namely:

i) Circumferential direction treated consistently;

ii) Radial and meridional directions treated in lumped

parameter format.

Based on such an approachj the calculation of the matrix involves a

quadratic variation in displacement in the circumferential direction

specifically

uma + bn + cn 2 (3.4)

such that n is the circumferential coordinate. Note these proportionalities

are assumed for the inertia calculations only. The displacement fields used

for the stiffness matrix calculation remain as orginally defined.

Using the known circumferential positions of the nodes, as shown for one

circumferential line of nodes in Figure 3.2, the values of the coefficients

in equation (3.4) are determined. These are then used to give shape functions

and derivatives of the shape functions for these nodes. Each circumferential

line of nodes in the element is defined as a zone, as shown in Figure 3.3.
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The center zone has only end nodes in the shell element, but a pseudo-node

is defined at the element center so that the same formulation can be used

for this zone. Each zone is given a weighting value due to the lumped formu-

lation being used in the meridional direction.

The mass terms for the center node of the middle zone, the pseudo-node,

must be condensed out because it is not present in the stiffness matrix

calculations, and hence has no degrees of freedom in the global equations.

This can be done in the usual manner on the element level, before the element

mass matrix is assembled into the global mass matrix. This method of cal-

culating the transformed mass matrix should be computationally more efficient

because numerical integration is not needed.

4. Three Dimensional PantoRraphing Gap Element StrateRy

There are several different ways to handle the problem of contact.

These include:

i) Direct application by continuous modification

of boundary conditions [8];

ii) Hughes type auxiliary matrices [9];

iii) Penalty methods [i0];

iv) Influence coefficients [Ii] and;

v) Gap type procedures [12,15].

Each of these schemes have various advantages and disadvantages. Perhaps

the single most often occurring problem involves the fact that some form

of stiffness update and inversion is typically required during the overall

solution process.

To reduce computational effort, use is made here of substructuring
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concepts.

recast in the form

Specifically, the global incremental stiffness formulation is

[KcI] [KC ] J AYc AF C

(4.1)

such that I, C, (AYI, AYc), (_I' &_C ) and ([KI],...,[Kc]) respectively

define the subscripts associated with internal and contact degrees of

freedom, the incremental deflection fields, the incremental nodal forces

and lastly the various partitions of the tangential stiffness matrix.

Solving for the incremental internal and contact degrees of freedom, we

yield the following substructural expressions namely

_C _ [[Kc] - [KcI][KI]-I[KIc]]A_C - [KcI][KI]-I_I

and

AYI = -[KI]-I[KIc]AYc + [KI]-IAFI

(4.2)

(4.3)

To streamline the computational effort, [KI] is updated only at the be-

ginning of a given load step. During successive iterations, [KIc], [KcI]

and [KC] are intermittently updated depending on the type of contact pro-

cedure employed. In this context, (4.2) and (4.3) can be recast in the

following algorithmic form namely

iAYc = [i_I[Kc] - i_I[KcI] o[Ki ]-I i_I[KIc]]iAFc -

i_I[KcI] o[KI ]-I i_iaFi
(4.4)

iaYi = o[Ki ]-I i_l[Kic ] ia_C + o[Ki ]-I i_la_I
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where the sub .( ) denotes the ith iteration of the given load step
1

and sub-zero the initial value.

To enable the more controlled handling of contact problems, local

constraints can be imposed on the individual degrees of freedom associated

with AYI and AYc. Recalling Part 1 of the paper, the nonlinear FE formu-

lation can be solved via a multiply constrained partitioned NR solver. In

terms of the substructuring noted in (4.1), the constraint process is applied

directly to successive deflection excursions.

by [diag(X)]AY and hence (4.1) takes the form

Specifically, AY is replaced

[KI]
[Kcl]cI <-)[diag(X)] =

[Kcl m_c AF_C
(4.5)

where

[diag(X)] = I [diag(lI)][O] t°,1
[diag(Ac)]

(4.6)

such that [diag(Ai)] and [diag(Ac)] respectively denote diagonal matrices

defining individual constraints on the internal and contact degrees of

freedom. Based on the form of (4.5), it follows that

[diag(iXC)]iAYc =

[i_I[Kc] - i_l[Kci] o[Ki ]-I i-l[Kic]]iA_C

i_l[KCl] o[Xl]'li_16Fi (4.7)

and
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[diag(iIi)]iSYi =

o[Ki ]-I i_l[Kic][diag(iAC)]iAYc + o[KI]-Ii_IAFI (4.8)

Note, each of the individual constraints appearing in [diag(iAC)] and

[diag(iAi)] can be defined by either:

i)

ii)

Establishing upper bounds on the deflections [3] of

each particular substructur_l partition of [K I] and

[K c] or;

Employ a constraint function to bound allowable

excursions [14].

For the problem of contact, it is preferable to employ i) wherein

upperbound allowable excursions for the various partitions of _C can be

continuously reset by monitoring the gap between contact surfaces. The

various partitions of AYI can be controlled in the manner defined by ii),

namely by locally defined constraint functions [4].

Since a very large scale rolling simulation will be considered in this

paper, to avoid the potential instabilities of the penalty method and in-

efficiencies of the Hughes scheme, the pantographing gap methodology of

Padovan and Moscarello [13] is employed. Noting Figs. 4.1, 4.2, and 4.3,

pantographing enables the gap element to avoid severe distortion which

occurs if ground nodes are constrained. Additionally, the gap element is

subdivided into several zones associated with the level of integration em-

ployed. Specifically, as can be seen from Fig. 4._, since 3-3-3 integration

is employed for the 20 node element, 9 separate zones are defined in the
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contact area. These zones are alternatively turned on and off by the

appropriate proximity criteria [13]. In much the way as elastic plastic

formulations [15].

Noting Fig. 4.3p the element is continuously pantographed until a

given node is found to satisfy the requisite proximity/contact criteria [13].

At this point, the zone associated with the given node is handled via an

updated Lagrangian observer referencing the frozen pantographed portion

of the node. If the node is found to release, then pantographing is resumed

such that the prehistory is erased.

The stiffness of the gap has essentially three phases of operation

Completely noncontactedwherein the stiffness is very

small;

ii) Partially or fully contacted wherein no slip is

allowed and;

iii) Partially or fully contacted wherein frictional slips

is allowed.

In the uncontacted mode, the gap element stiffness returned for assembly

in the global matrix is numerical very small. For the partially or fully

contacted mode wherein no slip is allowed, the appropriate zonal or whole

element stiffness is made stiffer than the neighboring element. Lastly, for

the case where frictional slip is allowed, the material stiffness of the gap

is replaced by an adjusted orthotropic version of that of the neighboring

structural element. Specifically:

i) The direction normal to the contact surface is made very

stiff (an order of magnitude larger than the neighboring

element);

namely:

i)
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ii) The Poisson effect terms linking the normal and

tangential behavior are deleted;

iii) Tangential direction to contact is reset so as to have

the same stiffness properties as neighboring element and;

iv) Tangential contact nodal deflections are released and

replaced by appropriate friction forces.

Note, the criteria defining contact and slip-stick behavior are given

by the following expressions namely:

i) Contact conditions;

e f>0, no contact

(YcN£ - Y_crit)-6 I <0 contact

(4.14)

>0 no contactF_£ <0 contact
(4.15)

ii) Slip/stick conditions;

>0 slip
(Fet_ - YCrit ) (4.16)

_0 stick

e , yewhere here £ defines the contact nodes of the eth element, and YCN£ £Crit'

6, F_£, F eT£ and FCrit respectively represent the normal deflection, contact

gap distance of given node, error tolerance, normal force, tangential force

and the slip force threshold.

From an operational point of view, the slip mode will require the gap
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th
stiffness to be restructured. In particular, given the e

expression, after partitioning we have that

gap element

fF__ = I[K_] [K_T] ] {ye).g

(4.9)

where noting Fig. 4.4, the sub • denotes slipping tangential degrees of

freedom at the contact nodes, while g defines the remaining field variables.

Based on (4.9), the slip condition can be defined by the following sub-

structural representation namely

= e [K_ -i e e e e -iF ' (4.10)Fe [[K_] - [Kg_] ] [kg]]Yg + [KgT][K z] _z-g

Depending on the number of element zones involved in frictional slipping,

F_e _- fe(FN ) (4.12)

then

where here F_ denotes the normal forces at contact nodes and fe the appro-

priately zonalized function defining the slip friction.

case of Coulomb friction, the generalized function

by

In the classic

fe(F_N) iS replaced

ipe=_I: [ el FN (4.13)

such that [ e] is properly structured so as to define the various zones

of the element which are slipping.
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As a final note, it follows that due to the use of moving coordinates,

no special change needs to be implemented in the pantographing gap strategy.

In particular it applies to both standing and rolling situations involving

both steady and transient simulations.

5. Benchmarking

To benchmark the foregoing rolling 3-D shell and contact schemes,

several comprehensive simulations will be considered. Overall, these

include:

i) 2-D evaluation to determine operational

characteristics;

ii) Purely shell type 3-D model to evaluate mesh

spacing requirements;

iii) Mixed shell and 3-D element simulation

of rolling tire.

To enable such testing, the various formulations developed in sections

2-4 were encoded in the NONSAP derivative code NFAP. The only major

modification needed to convert the code involved the extension of the

blocked skylined out of core solver [17] to handle the nonsyTmuetric

matrices arising from the rolling/moving formulation. Beyond this, only

standard modifications were introduced into the shell and 3-D (20 node)

element libraries.

Note, the main thrust of the benchmarking will be to:

i) Correlate current modelling scheme with previous results

and;

ii) Compare results with experimental tests.
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These comparisons will consider several aspects of system behavior, namely:

i) Determine capabilities of rolling shell and 3-D

elements to capture proper small deformation

superposed on large eigenvalue properties and

associated mode shapes;

ii) Establish capabilities of gap contact scheme and;

iii) Establish capabilities to handle overall interplay

between geometric/material nonlinearity and inertia

effects.

As a first test, we consider the dynamic response of the 2-D ring on

elastic foundation model of the tire [17]. Noting the model defined in

Fig. 5.1, Figs. 5.2 and 5.3 illustrate the mixed shell/3-D and purely 3-D

simulations. To evaluate and compare the dynamic characteristics of the

shell and 3-D elements, we shall consider the problem of a circumferential

traveling radial load, Fig. 5-4. Recalling the analytical solution developed

by Padovan [18], when the circumferential traveling speed of the radlal load

is matched with the ratio of an individual frequency _M and its mode number

M, namely _M/H, a resonance type response is excited. For instance, con-

sidering the 11 th mode depicted in Fig. 5.5, the shell and 3-D models yielded

critical speeds of 119.7 mph and 120.3 mph respectively. Similar levels of

accuracy were noted for all the critical speeds/natural frequencies ranging

from the minimum to those above 180 mph (namely the first 25 frequencies).

As a next test, we shall consider the problem of viscoelastic rolling contact.

Figure 5.6 illustrates the gap element supported model. Based on this simu-

lation, Fig. 5.7 depicts the rolling contact shape and associated normal pres-

sure distribution in the contact zone. Both the shell and 3-D simulations



21

yielded essentially the same results for all reasonable ranges of rolling

speed.

The next model considered consists of simulating a two layer pressu-

rized torus whose overall geometry and material properties are depicted

in Fig. 5.8. As with the ring model, the pressurized torus is subject to a

circumferentially traveling radial load. Figure 5.9 illustrates the changes

in crown mode shape as a critical speed is approached and passed. The overall

resonance mode shape is given in Fig. 5.10. These results were correlated

with frequencies defined by the classic eigenvalue type formulation of the

problem using a highly refined model. This comparison enabled the cali-

bration of the appropriate element sizing.

for the given shell element type;

i)

ii)

For instance, it was found that

Element arcs that subtended greater than 1/36 of the

circumference tended to yield slow convergence and;

In the meriodional/cross sectional orientation, at

least 18 elements were needed to yield adequate model

resolution.

With such element spacings, all frequencies in the range of engineering

interest showed at most 3Z deviations between the traveling and classic

eigenvalue formulations. Such sensitivity studies enabled the reduction of

the overall size of the tire model which even so is quite extensive.

As the culminating benchmark, Fig. 5.11 illustrates the 15,000 degree

of freedom model of a tire. Overall, the model treated the various internal

laminations via Halpin Tsai [19] type correlations. The reason for the level

of both meridional and circumferential refinement follows from the torus tests.

These revealed that fairly uniform circumferential element spacing is needed
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to define the proper mode shape/dynamic characteristics.

The first test applied to the model consisted of pressurization and

subsequent loading into ground contact. Figure 5.12 illustrates the gap

element model used to define the contact region. Based on this model, the

pressurization and subsequent loading into ground contact defined the

axle load deflection curve denoted in Fig. 5.13. As can be seen, the model

correlated quite well with experimental data obtained from the Firestone

Tire and Rubber Company. The actual deflected shape of the contact region

of the model is shown in Fig. 5.14.

Next, we shall consider the models' capability to capture the frequency

characteristics of the tire. Again, noting Fig. 5.15, this is achieved by

placing a circumferentially travelling radial load on the crown section.

Figures 5.15-5.21 illustrate various aspects of the dynamics. Note, as we

are strictly interested in defining inertia capturing capabilities, damping

was deleted from this series of tests.

For velocities lower than 90 mph, little inertial effects were excited

by pure rolling. As an example of this, Fig. 5.15 illustrates the tire re-

sponse at 90 mph. Under modest increases above 90 mph, resonances were

noted. For instance, Fig. 5.16 illustrates the crown node response to the

approach and passing of a resonance speed. As can be seen, the range of speed

is quite tight. The amplitude behavior during the resonance passing process

is denoted in Fig. 5.17. Note, without damping, the resonance response is

unbounded. At the critical speed (peak amplitude) associated with the given

mode, Figs. 5.18 and 5.19 illustrate the crown and overall tire behavior.

These results were within IZ error of the experimentally generated data. With

further increases in speed, other modes were excited. Figures 5.20 and 5.21

"illustrate the crown and whole tire response behavior at 138 mph.
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It is interesting to note that the first critical speed of a rolling structure

prototypically involves higher order modes. As the speed is gradually raised

from the first critical, both lower and higher order modes may be excited.

This is clearly seen by comparing Figs. 5.19 and 5.21 which illustrate the 8th

(117 mph) and 6th (138 mph) modal responses.

Such behavior is a direct outgrowth of the fact that the critical modes

are directly related to _M/M. Noting Fig. 5.22, we see that usually mM is

monotone increasing in M. Based on this, a_/M prototypically is nonmonotone

for small M. Figure 5.23 illustrates such behavior. The dip in the curve

illustrated, points to the fact that higher order modes can give rise to the

first critical. As the speed is increased, noting the trends depicted in Fig.

5.23, various lower and higher resonces are subsequently excited. Additionally,

depending on the inherent curvature of the mM versus M behavior of the struc-

ture, the critical velocities can either be tightly or loosely packed. Such

trends are depicted in Fig. 5.24.

When damping is introduced, the individual modes tend to merge into a

single so-called standing wave which appears behind the contact region and

attenuates in the circumferential direction [3]. This behavior is clearly

seen in Fig. 5.7. As the speed is gradually increased, the wave length tends

to elongate. Such behavior is an outgrowth of the dissipation of higher order

modes.

As the last benchmark problem, we shall consider the steady freely rolling

tire. Since the upper bound behavior of rolling tires is the so-called stand-

ing wave problem, main emphasis win be given to model this form of dynamic

response. Figure (5.25) illustrates the standing wave response developed on

a road wheel type test rig. As can be seen, extremely large deformation cha-
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racteristics are excited. Employing the model depicted in Fig. 5.11, the

rolling behavior is obtained in several steps namely:

i) Pressurize tire structure accounting for follower

type forces;

ii) Push rolling tire into contact by varying hub

deflection incrementally or alternatively;

iii) Push non-rolling tire into contact by varying

the hub deflection; once converged, rolling

velocity is incrementally increased.

To evaluate the importance of friction to the global effects, both

pure slip and stick conditions were considered. While this induced different

very localized shear distributions in the tread area of the contact patch,

no changes were recorded in the global dynamic resonse. In this context, a

stick condition was employed for the freely rolling full scale model. This

significantly reduces run times.

Based on the foregoing, Figs. 5.26-5.29 illustrate the response under

different ranges of viscoelasticity. As can be seen from Figs. 5.26-5.27, for

the very lightly damped case, standing wave patterns appear both fore and

aft of the contact patch. This follows from the fact that there was insuf-

ficient damping to attenuate the inertial interplay in circumferential direction.

Once sufficient damping is introduced, essentially all the fore interactions are

attenuated.

From a comparison of Figs. 5.25 and 5.29, we see that excellent accuracy

is obtained. In this context, it is noted that the moving element approach

if used inconjunction with the appropriate FE mesh spacing can handle the com-

plex dynamics associated with real world traveling load problems. This includes
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the possibility of handling:

i)

ii)

iii)

iv)

2-D, 3-D and shell type formulations;

Contact with and without friction;

Small and large deformations effects and;

Viscoelastic behavior.

6. Su_nary

Based on the moving strategy developed in Part i, this paper derived

3-D, shell and contact algorithm extensions. These modelling capabilities

were extensively benchmarked to evaluate their operational capabilities.

This included both analytical and experimental correlations. As was seen,

excellent agreement was obtained over a wide range of physical situations

Traveling load problems involving moving

velocities over the full interval including

critical speeds;

ii) 3-D, shell and 2-D situations; and

iii) Full simulation of rolling contact accomo-

dating viscoelasticity and the full definition

of inertial effects.

Note, due to the manner of formulation, the moving element procedure can

be encoded into any of the currently available general purpose codes. This

will enable the handling of moving load/boundary condition problems.

namely:

i)
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Figure and Table Captions

Table No. Caption

2.1

2.2

2.3

2.4

Shape function components for 20 node isoparametric

solid element

First derivative of shape function components with

respect to _I; 20 node isoparametric solid element

Second derivative of shape function components with

respect to _i; 20 node isoparametric solid element

Mixed second derivative of shape function components

with respect to _I; _2; 20 node isoparametric solid

element



FiR. No.

2.1

2.2

3.1

3.2

3.3

4.1

4.4

5.3

5.4

5.5

5.6

5.7

5.8

5.9

Figure and Table Captions

Caption

Three Dimensional 20 Node Solid Element in Cartesian Space

Three Dimensional 20 Node Solid Element in _I, _2, _3

Isoparemetric Space

Reference Surface of the Thick Shell Element in Cartesian

Space

Local Circumferential Positions for a Line of Nodes Used

in the Closed Form Mass Formulation

Division of the Shell Element into Three Zones for the

Closed Form Approach

Attachment and Constrained Face of the Three Dimensional

Gap Element with Node Ordering

Deformed Shape of a Gap Element with Lower Nodes Constrained

Initial (- _ -) and Pantographed (--x--) Shapes Minimizing

Gap Element Distortion

Zone Divisions in the Gap Element Used to Impose Partial

Contact by Material Property Change at Integration Points

Ring on Elastic Foundation Tire Model

Finite Element Grid of the Ring on Elastic Foundation Tire

Model Using Shell Elements for the Ring

Finite Element Grid of the Ring on Elastic Foundation Tire

Model Using Solid Elements for the Ring

Line Load Across the Width of the Model Used as "Point"

Load Excitation

llth Mode Resonance Response at 145.6 Rad/Sec (119.7 MPH)

for RingModeled by Shell Elements

Finite Element Grid for the Ring on Elastic Foundation Model

Including Gap Elements

Deformed Shape and Contact Stress Distribution at 145.6

Rad/Sec (119.7 MPH) and Damping (_=I0 -4)

Finite Element Grid of the Half Torus Model Viewed at a

Slight Angle from the Axis of Rotation

Response of the Torus Model as a Resonance/Critical Speed

is Approached and Passed

29
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5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18

5.19

5.20

5.21

5.22

5.23

5.24

5.25

5.26

Caption

4th Mode Resonance Response of the Torus Model at 284

Rad/Sec

Finite Element Grid of the Half Tire Model Used in the

Rolling Contact Model (15000 Degrees)

Finite Element Grid of the Quarter Tire Model with Gap

Elements Attached in Potential Contact Zone

Predicted and Measured Static Load-Deflection Response of

Tire

Deformed Shape of the Quarter Tire Model with 1.0 Inch

Axle Deflection

Side View of the FE Model Response to Radial Circumfer-

entially Traveling Load Moving at 135.2 Rad/Sec (90 MPH)

Predicted Response of Tire's Crown Nodes as Traveling

Load Speed Approaches and Passes a Resonance/Critical

Speed

Traveling Speed-Radial Displacement Spectrum;Approach

and Passing Behavior about Resonance/Critical Speed

Response of the Tire's Crown Nodes at 175.7 Rad/Sec

(117 MPH) Due to Circumferentially Traveling Radial Load

Side View of the FE Model Response at 175.7 (117 MPH)

Due to Circumferentially Traveling Radial Load

Response of the Tire's Crown Nodes at 207 Rad/Sec (138

MPH) Due to Circumferentially Traveling Radial Load

Side View of the FE Model Response at 207 Rad/Sec (138

MPH) Due to Circumferentially Traveling Radial Load

Typical Frequency Spectrum Characteristics to Circum-

ferential Mode Variations

Critical Velocity Relationship

Effects of Frequency Spectral Properties on Critlcal

Speed Characteristics

Standing Wave Response of Rolling Tire

Response of the Damped Tire Model (_=i0 -4) Rotating at

175.7 Rad/Sec (117 MPH) in Contact with the Ground DUe

to a .i Inch Axle Deflection
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5.28

5.29

Caption

Response of Damped Tire Model (_=10 -4) Rotating at 175.7

Rad/Sec (117 MPH) in Contact with Ground Due to i. Inch

Axle Deflection

Response of Damped Tire Model (_=1.5_i0 -4) Rotating at

175.7 Rad/Sec (117 MPH) in Contact With the Ground Due

to a 0.i Inch Axle Deflection

Response of the Damped Tire Model (_=1.5_i0 -4) Rotating
at 175.7 Rad/Sec (117 MPH) in Contact with the Ground Due

to a 1. Inch Axle Deflection



NODE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Table 2.1

(_i; _2; _3) - (r; s; t)

SHAPE FUNCTION (N)

(I/8)(l+r)(l+s)(l+t)

(I/8)(l-r)(l+s)(l+t)

(1/8)(1-r)(1-s)(1+t)

(I/8)(l+r)(1-s)(l+t)

(1/8)(l+r)(l+s)(1-t)

(1/8)(1-r)(l+s)(1-t)

(1/8)(1-r)(1-s)(1-t)

(1/S)(l+r)(1-s)(1-t)

(1/4)(1-r2)(l+s)(l+t)

(1/4)(1-r)(1-s2)(l+t)

(1/4)(1-r2)(1-s)(l+t)

(1/4)(l+r)(1-s2)(l+t)

(1/4)(1-r2)(l+s)(1-t)

(1/4)(1-r)(1-s2)(1-t)

(1/4)(1-r2)(1-s)(1-t)

(1/4)(l+r)(1-s2)(1-t)

(1/4)(l+r)(l+s)(1-t 2)

(1/4)(1-r)(l+s)(1-t 2)

(1/4)(1-r)(1-s)(1-t 2)

(1/4)(l+r)(1-s)(1-t 2)

- (1/2)(N9+N12+N17)

- (1/2)(N9+N10+N18)

- (1/2)(N10+N11+N19)

- (1/2)(Nll+N12+N20)

- (1/2)(N13+N16+N17)

- (1/2)(N13+N14+N18)

- |l/2)(N14+N15+N19 )

- (1/2)(N15+N16+N20)

Shape function components for 20 node

Isoparametric solid element



NODE

1

2

3

4

S

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Table 2.2

(_i; _2; _3 ) _ (r; s; t)

DERIVATIVE OF SHAPE FUNCTION (Hrr)

(1/8)(l+s)(l+t)

(-1/8)(l+s)(l+t)

(-1/8)(1-s)(l+t)

(1/8)(1-s)il+t)

(1/8){l+s)(1-t)

(-l/8)(l+s)il-t)

(-1/8)(1-s)(l-t) -

(1/8)(1-s)(1-t)

(-1/2)(r)(l+s)(l+t)

(-1/4)(1-s2)(l+t)

(-1/2)(r)(l-slll+t)

(1/4)(1-s2)(l+t)

(-1/2)(rlll+slll-t)

(-1/4)(1-s2)(1-t)

(-1/2)(rl(1-slll-t)

(1/41(1-s2)ll-t)

(1/4)(l+s)(1-t 2)

(-1/4)(l+s)(1-t 2)

(-1/4)(1-s)(1-t 2)

(1/4}(1-s)(l-t 2)

- (1/2)(N9,r+N12,r+N17,r)

- (1/2)(Ng,r+NI0,r+N18,r)

- (1/2)(N10,r+NIl,r+N19,r)

- (1/2)(Nll,r+H12,r+N20,r)

- (I/2)(NI3,r+NI6,r+NIT,r)

- (I/2)(N13,r+N14,r+H18,r)

(I/2)(N14,r+NiS,r+N19,r)

- (1/2)(N15,r+N16,r+N20,r)

First derivative of

with respect to _1;
element

shape function components

20 node isoparametric solid



(_1; _2; _3 ) _ (r; s; t)

NODE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

DERIVATIVE OF SHAPE FUNCTION (N_rr)

(-1/2) (N 9,rr+Nl2,rr+Nl7,rr )

(-1/2) (N 9 ,r r+Nl0, rr+Nl8 ,rr )

(- I/2 )(NI0, rr+Nl I, rr+Nl9 •rr)

(-1/2) (NIl, rr+Nl2, rr+N20 ,rr )

(-1/2) (NI3, rr+Nl6, rr+Nl7 ,rr )

(-1/2) (NI3, rr+Nl 4, rr+Nl8 ,rr )

(-1/2) (NI4, rr+Nl5 ,rr+Nl9 ,rr )

(-1/2) (NI5, rr+Nl6 ,rr+N20 ,rr )

(-1/2) (l+s) (l+t)

0

(-i/2) (l-s) (l+t)

0

(-1/2) (l+s) (l-t)

0

(-1/2) (l-s) (l-t)

0

0

0

0

Table 2.3 Second derivative of shape function components

with respect to _; 20 node isoparametric solid
element



NODE

I

2

3

4

5

6

7

8

9

I0

II

12

13

14

15

16

17

18

19

20

(_1; _2; _3 ) _ (r; s; t)

DERIVATIVE OF SHAPE FUNCTION
(N,rs)

(1/8)(I+t) - (i/2)(N9,rs+N12,rs+N17,rs)

(-1/8)(1+t) - (1/2)(Ng,rs+N10,rs+N18,rs)

(1/8)(1+t) - (1/2)(N10,rs+N11,rs+N19,rs)

(-1/8)(1+t) - (1/2)(Nll,rs+N12,rs+N20,rs)

(1/8)(1-t) - (1/2)(N13,rs+N16,rs+N17,r$)

(-1/8}(1-t) - (1/2)(N13,rs+N14,rs+N18,rs)

(1/8)(1-t) - (1/2)(N14,rs+N15,rs+N19,rs)

(-1/8)(1-t) - (1/2)(N15,rs+B16,rs+N20,rs)

(-1/2)(r)(1+t)

(1/2)(s)(1+t)

(1/2)(r)(l+t)

(-1/2)(s)(l+t)

(-1/2)(r)(1-t)

(1/2)(s)(1-t)

(1/2}(r)(1-t)

(-1/2)(s)(1-t)

(1/4)(1-t 2)

(-1/4)(1-t 2)

(1/4)(1-t 2}

(-1/4)(1-t 2)

Table 2.4
Hixed second derivative of shape function components

with respect to _2 20 nodeelement £I; ; isoparametric solid
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Fig. 3. i REFERENCE SURFACE OF

THE THICK SHELL ELEMENT

IN CARTESIAN SPACE
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Fig . 3.2 LOCAL CIRCUMFERENTIAL

POSITIONS FOR A LINE

OF NODES USED IN THE

CLOSED FORM _4_KSS

FOPS_ULATION
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X

Fig . 3.3 DIVISION OF THE SHELL

ELEMENT INTO THREE ZONES

FOR THE CLOSED FORM

APPROACH



Z

Fig. 4. i ATTACHMENT AND CONSTRAINED

FACES OF THE THREE DIMEN-

SIONAL GAP ELEMENT WITH NODE

ORDERING



STRUCTURE

CONSTRAINED

/

Fig. 4.2 DEFORMED SHAPE OF A GAP

ELEMENT WITH LOWER NODES

C ONS TRA I NED



X

Fig. 4.3 INITIAL (-- * --) AND

PANTOGRAPHED (+)

SHAPES MINIMIZING GAP

ELEMENT DISTORTION
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Fig. 4. 4 ZONE DIVISIONS IN THE GAP
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GRATION POINTS



RING

( TREAD / BELT ) F OUNDAT I ON

( SIDEWALL )

Fig. 5. 1 RING ON ELASTIC FOUNDATION

TIRE MODEL



3--D SOLID

ELEMENT

(FOUNDATION) SHELL ELEMENT

(RING)

Fig. 5. 2 FINITE ELEMENT GRID OF THE

RING ON ELASTIC FOUNDATION

TIRE MODEL USING SHELL

ELEMENTS FOR THE RING



3--D SOLID

ELEMENTS

(FOUNDATION)

3--D SOLID ELEMENTS

(RING)

Fig. 5.3 FINITE ELEMENT GRID OF THE RING

ON ELASTIC FOUNDATION TIRE MODEL

USING SOLID ELEMENTS FOR THE

RING



APPLIED "TRAVELING"

RADIAL "POINT" LOAD

Fig ° 5.4 LINE LOAD ACROSS THE

OF THE MODEL USED AS

LOAD EXCITATION

WIDTH

"POINT"



Fig ° 5.5 llth MODE RESONANCE

RESPONSE AT 145.6 RAD/SEC

(119.7 MPH) FOR RING

MODELED BY SHELL ELEMENTS



GAP ELEMENTS

Fig. 5. 6 FINITE ELEMENT GRID FOR

THE RING ON ELASTIC

FOUNDATION MODEL INCLUDING

GAP ELEMENTS



i
sv OiG

CONTACT FORCE DISTRIBUTION

Fig . 5.V DEFORMED SHAPE AND CONTACT STRESS

DISTRIBUTION AT 145.6 RAD/SEC

(119.7 MPH) AND DAMPING

(_=1o -4 )



r

RADIAL TRAVELING LOAD

Fig. 5. 8 FINITE ELEMENT GRID OF THE HALF

TORUS MODEL VIEWED AT A SLIGHT

ANGLE FROM THE AXiS OF ROTATION



Fig .

a) 275 _D/SEC

i
b) 282 RAD/SEC

c) 283 RAD/SEC d) 284 RAD/SEC

e) 285 RAD/SEC

5.9 RESPONSE OF THE TORUS MODEL

RESONANCE/CRITICAL SPEED IS

APPROACHED AND PASSED.

AS A



Fig. 5. i0 4th MODE RESONANCE

RESPONSE OF THE TORUS

MODEL AT 284 RAD/SEC



Fig. 5. 11 FINITE ELEMENT GRID OF THE

HALF TIRE MODEL USED IN THE

ROLLING CONTACT MODEL

(15000 DEGREES)



GAP ELEMENTS

Fig. 5.12 FINITE ELEMENT GRID OF THE

QUARTER TIRE MODEL WITH GAP

ELEMENTS ATTACHED IN

POTENTIAL CONTACT ZONE
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FE ANALYSIS

EXPERIMENT

i.

DEFLECTION fINCHES)

Fig . 5.13 PREDICTED AND MEASURED

STATIC LOAD--DEFLECTION

RESPONSE OF TIRE



\

Fig. 5.14 DEFORMED SHAPE OF THE

QUARTER TIRE MODEL WITH

1.0 INCH AXLE DEFLECTION



RADIAL TRAVELING

LOAD

Fig. 5. 15 SIDE VIEW OF THE FE

MODEL RESPONSE TO RADIAL

CIRCUMFERENTIALLY TRAVEL-

ING LOAD MOVING AT 135-2

RAD/SEC (90 MPH)



Fig °

a) 170.0 RAD/SEC b) 175.0 RAD/SEC

c) 175.5 P._AD/SEC d) 175.7 R_%D/SEC

e) v 176.0 RAD/SEC f) 176.5 RAD/SEC

5.16 PREDICTED RESPONSE OF TIRE'S

CROWN NODES AS TRAVELING LOAD

SPEED APPROACHES AND PASSES a

RESONANCE/CRITICAL SPEED
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Fig. 5.17 TRAVELING SPEED--RADIAL

DISPLACEMENT SPECTRUM;

APPROACH AND PASSINS

BEHAVIOR ABOUT RESONANCE/

CRITICAL SPEED



RADIAL TRAVELING

LOAD

Fig . 5.18 RESPONSE OF THE TIRE'S

CROWN NODES AT 175.7

RAD/SEC (117 MPH) DUE TO
CIRCUMFERENTIALLY TRAVELING

RADIAL LOAD



RADIAL TRAVELING

LOAD

Fig. 5. 19 SIDE VIEW OF THE FE MODEL

RESPONSE AT 175. 7 (117 MPH)

DUE TO CIRCUMFERENTIALLY

TRAVELING RADIAL LOAD



RADIAL TRAVELING

LOAD

Fig . 5.20 RESPONSE OF THE TIRE'S CROWN

NODES AT 207 RAD/SEC (138 MPH)

DUE TO CIRCUMFERENTIALLY

TRAVELING RADIAL LOAD



RADIAL TRAVELING

LOAD

Fig. 5.21 SIDE

RESPONSE

(138 MPH)

ENTIALLY

LOAD

VIEW OF THE FE MODEL

AT 207 RAD/SEC

DUE TO CIRCUMFER--

TRAVELING RADIAL
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h.

Fig. 5.22 TYPICAL FREQUENCY SPECTRUM

CHARACTERISTICS TO CIRCUM-

FERENTIAL MODE VARIATIONS
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Pig . 5.23 CRITICAL VELOCITY

RELATIONSHIP
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Fig ° 5.24 EFFECTS OF FREQUENCY SPECTRAL

PROPERTIES ON CRI'rICAL SPEED

CHARACTERISTICS
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ROTATIONAL /DIRECTION

STANDING

WAVE

Fig ° 5.26 RESPONSE OF THE DAMPEDTIRE

MODEL (_=i0 -4 ) ROTATING AT

175.7 RAD/SEC (117 MPH) IN

CONTACT WITH THE GROUND DUE

TO A . i INCH AXLE DEFLECTION



ROTATIONAL

DIRECTIO/

STANDING

WAVE

Fig. 5. 27 RESPONSE OF DAMPED

(_=iO -& ) ROTATING AT

RAD/SEC (117 MPH) IN

WITH GROUND DUE TO i.

AXLE DEFLECTION

TIRE MODEL

175.7

CONTACT

INCH



q, b

ROTAT I ONAL

DIRECTION/

0

Fig. 5.28 RESPONSE OF DAMPED TIRE MODEL

(W =1"5"_I0-4) ROTATING AT 175.7

RAD/SEC (IIV MPH) IN CONTACT

WITH THE GROUND DUE TO m O. i

INCH AXLE DEFLECTION



ROTAT I ONAL

DIRECTION /

STANDING

WAVE

Fig. 5.29 RESPONSE OF THE DAMPED TIRE

MODEL (_=1.5_'ci0 -4 ) ROTATING

AT 175.7 RAD/SEC (117 MPH)

IN CONTACT WITH THE GROUND

DUE TO A i. INCH AXLE DEFLEC-

TION


